Publication: Rational points in geometric progression on the unit circle
dc.contributor.author | Çelik, Gamze Savaş | |
dc.contributor.author | Sadek, Mohammad | |
dc.contributor.author | Soydan, Gökhan | |
dc.contributor.buuauthor | Çelik, Gamze Savaş | |
dc.contributor.buuauthor | SOYDAN, GÖKHAN | |
dc.contributor.department | Bursa Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü | |
dc.contributor.orcid | 0000-0002-6321-4132 | |
dc.contributor.researcherid | EPC-6610-2022 | |
dc.contributor.researcherid | GEK-9891-2022 | |
dc.date.accessioned | 2024-06-24T08:24:22Z | |
dc.date.available | 2024-06-24T08:24:22Z | |
dc.date.issued | 2021-01-01 | |
dc.description.abstract | A sequence of rational points on an algebraic planar curve is said to form an r-geometric progression sequence if either the abscissae or the ordinates of these points form a geometric progression sequence with ratio r. In this work, we prove the existence of infinitely many rational numbers r such that for each r there exist infinitely many r-geometric progression sequences on the unit circle x(2) + y(2) = 1 of length at least 3. | |
dc.identifier.doi | 10.5486/PMD.2021.9046 | |
dc.identifier.endpage | 520 | |
dc.identifier.issn | 0033-3883 | |
dc.identifier.issue | 3-4 | |
dc.identifier.startpage | 513 | |
dc.identifier.uri | https://doi.org/10.5486/PMD.2021.9046 | |
dc.identifier.uri | https://publi.math.unideb.hu/load_doi.php | |
dc.identifier.uri | https://arxiv.org/pdf/2010.03830 | |
dc.identifier.uri | https://hdl.handle.net/11452/42261 | |
dc.identifier.volume | 98 | |
dc.identifier.wos | 000647271800016 | |
dc.indexed.wos | WOS.SCI | |
dc.language.iso | en | |
dc.publisher | Kossuth Lajos Tudomanyegyetem | |
dc.relation.bap | F-2020/8 | |
dc.relation.journal | Publicationes Mathematicae-debrecen | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Elliptic curve | |
dc.subject | Geometric progression | |
dc.subject | Huff curve | |
dc.subject | Rational point | |
dc.subject | Unit circle | |
dc.subject | Science & technology | |
dc.subject | Physical sciences | |
dc.subject | Mathematics | |
dc.title | Rational points in geometric progression on the unit circle | |
dc.type | Article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 356f7af9-3f0f-4c82-8733-d98627634647 | |
relation.isAuthorOfPublication.latestForDiscovery | 356f7af9-3f0f-4c82-8733-d98627634647 |