Yayın:
A note on the exponential diophantine equation A2n)x + (B2n)y = ((A2 + B2)n)z

Placeholder

Akademik Birimler

Kurum Yazarları

Yazarlar

Le, Maohua
Soydan, Gökhan

Danışman

Dil

Türü

Yayıncı:

Croatian Mathematical Society

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Özet

Let A, B be positive integers such that. inin{A, B} > 1, gcd(A, B) = 1 and 2 vertical bar B. In this paper, using an upper bound for solutions of ternary purely exponential Diophantine equations due to R. Scott and R. Styer, we prove that, for any positive integer n, if A > B-3/8, then the equation (A(2)n)(x) + (B(2)n)(y) = ((A(2) + B-2)n)(z) has no positive integer solutions (x, y, z) with x > z > y; if B > A(3)/6, then it has no solutions (x, y, z) with y > z > x. Thus, combining the above conclusion with some existing results, we can deduce that, for any positive integer n, if B 2 (mod 4) and A > B-3/8, then this equation has only the positive integer solution (x, y, z)= (1,1,1).

Açıklama

Kaynak:

Anahtar Kelimeler:

Konusu

Conjecture, Ternary purely exponential diophantine equation, Science & technology, Physical sciences, Mathematics, applied, Mathematics

Alıntı

Endorsement

Review

Supplemented By

Referenced By

3

Views

0

Downloads