Publication:
A note on the exponential diophantine equation A2n)x + (B2n)y = ((A2 + B2)n)z

dc.contributor.authorLe, Maohua
dc.contributor.authorSoydan, Gökhan
dc.contributor.buuauthorSOYDAN, GÖKHAN
dc.contributor.departmentBursa Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.
dc.contributor.orcid0000-0002-6321-4132
dc.contributor.researcheridM-9459-2017
dc.date.accessioned2024-07-02T11:08:41Z
dc.date.available2024-07-02T11:08:41Z
dc.date.issued2020-12-01
dc.description.abstractLet A, B be positive integers such that. inin{A, B} > 1, gcd(A, B) = 1 and 2 vertical bar B. In this paper, using an upper bound for solutions of ternary purely exponential Diophantine equations due to R. Scott and R. Styer, we prove that, for any positive integer n, if A > B-3/8, then the equation (A(2)n)(x) + (B(2)n)(y) = ((A(2) + B-2)n)(z) has no positive integer solutions (x, y, z) with x > z > y; if B > A(3)/6, then it has no solutions (x, y, z) with y > z > x. Thus, combining the above conclusion with some existing results, we can deduce that, for any positive integer n, if B 2 (mod 4) and A > B-3/8, then this equation has only the positive integer solution (x, y, z)= (1,1,1).
dc.identifier.endpage201
dc.identifier.issn0017-095X
dc.identifier.issn1846-7989
dc.identifier.issue2
dc.identifier.startpage195
dc.identifier.urihttps://hdl.handle.net/11452/42741
dc.identifier.volume55
dc.identifier.wos000598501000003
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherCroatian Mathematical Society
dc.relation.journalGlasnik Matematicki
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.subjectConjecture
dc.subjectTernary purely exponential diophantine equation
dc.subjectScience & technology
dc.subjectPhysical sciences
dc.subjectMathematics, applied
dc.subjectMathematics
dc.titleA note on the exponential diophantine equation A2n)x + (B2n)y = ((A2 + B2)n)z
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication356f7af9-3f0f-4c82-8733-d98627634647
relation.isAuthorOfPublication.latestForDiscovery356f7af9-3f0f-4c82-8733-d98627634647

Files

Collections