An enhanced artificial bee colony algorithm with solution acceptance rule and probabilistic multisearch

Thumbnail Image

Date

2015-09-09

Authors

Journal Title

Journal ISSN

Volume Title

Publisher

Hindawi

Abstract

The artificial bee colony (ABC) algorithm is a popular swarm based technique, which is inspired from the intelligent foraging behavior of honeybee swarms. This paper proposes a new variant of ABC algorithm, namely, enhanced ABC with solution acceptance rule and probabilistic multisearch (ABC-SA) to address global optimization problems. A new solution acceptance rule is proposed where, instead of greedy selection between old solution and new candidate solution, worse candidate solutions have a probability to be accepted. Additionally, the acceptance probability of worse candidates is nonlinearly decreased throughout the search process adaptively. Moreover, in order to improve the performance of the ABC and balance the intensification and diversification, a probabilistic multisearch strategy is presented. Three different search equations with distinctive characters are employed using predetermined search probabilities. By implementing a new solution acceptance rule and a probabilistic multisearch approach, the intensification and diversification performance of the ABC algorithm is improved. The proposed algorithmhas been tested on well-known benchmark functions of varying dimensions by comparing against novel ABC variants, as well as several recent state-of-the-art algorithms. Computational results show that the proposed ABC-SA outperforms other ABC variants and is superior to state-of-the-art algorithms proposed in the literature.

Description

Keywords

Mathematical & computational biology, Neurosciences & neurology, Particle swarm optimizer, Global optimization, Differential evolution, Search, Evolutionary algorithms, Global optimization, Optimization, Probability, Artificial bee colony algorithms, Artificial bee colony algorithms (ABC), Benchmark functions, Computational results, Foraging behaviors, Global optimization problems, Intensification and diversifications, State-of-the-art algorithms, Algorithms

Citation

Yurtkuran, A. ve Emel, E. (2016). "An enhanced artificial bee colony algorithm with solution acceptance rule and probabilistic multisearch". Computational Intelligence and Neuroscience, 2016.