Publication:
Development and validation of a simple risk scoring system for a COVİD-19 diagnostic prediction model

Loading...
Thumbnail Image

Date

2023-01-01

Authors

Güçlü, Özge Aydın
Ursavaş, Ahmet
Ocakoğlu, Gokhan
Demirdogen, Ezgi
Öztürk, Nilufer Aylin Acet
Topçu, Dilara Ömer
Terzi, Orkun Eray
Onal, Uğur
Dilektaşlı, Aslı Görek
Sağlık, İmran

Journal Title

Journal ISSN

Volume Title

Publisher

Tüberküloz ve Toraks

Research Projects

Organizational Units

Journal Issue

Abstract

Introduction: In a resource-constrained situation, a clinical risk stratification system can assist in identifying individuals who are at higher risk and should be tested for COVID-19. This study aims to find a predictive scoring model to estimate the COVID-19 diagnosis.Materials and Methods: Patients who applied to the emergency pandemic clinic between April 2020 and March 2021 were enrolled in this retrospective study. At admission, demographic characteristics, symptoms, comorbid diseases, chest computed tomography (CT), and laboratory findings were all recorded. Development and validation datasets were created. The scoring system was performed using the coefficients of the odds ratios obtained from the multivariable logistic regression analysis.Results: Among 1187 patients admitted to the hospital, the median age was 58 years old (22-96), and 52.7% were male. In a multivariable analysis, typical radiological findings (OR= 8.47, CI= 5.48-13.10, p< 0.001) and dyspnea (OR= 2.85, CI= 1.71-4.74, p< 0.001) were found to be the two important risk factors for COVID-19 diagnosis, followed by myalgia (OR= 1.80, CI= 1.082.99, p= 0.023), cough (OR= 1.65, CI= 1.16-2.26, p= 0.006) and fatigue symptoms (OR= 1.57, CI= 1.06-2.30, p= 0.023). In our scoring system, dyspnea was scored as 2 points, cough as 1 point, fatigue as 1 point, myalgia as 1 point, and typical radiological findings were scored as 5 points. This scoring system had a sensitivity of 71% and a specificity of 76.3% for a cut-off value of >2, with a total score of 10 (p< 0.001).Conclusion: The predictive scoring system could accurately predict the diagnosis of COVID-19 infection, which gave clinicians a theoretical basis for devising immediate treatment options. An evaluation of the predictive

Description

Keywords

Covid-19, Scoring system, Prediction model, Diagnosis, Science & technology, Life sciences & biomedicine, Respiratory system

Citation

Collections

1

Views

3

Downloads

Search on Google Scholar